Unit 4: MULTIPLE INTEGRALS

4.1 Double Integrals as VVolumes

When f(x, y) is a positive function over a rectangular region R in the xy-plane, we may
interpret the double integral of f over R as the volume of the 3-dimensional solid region over
the xy-plane bounded below by R and above by the surface z = f(x, y), such that:

Volume — / flx,y) dA,
R

THEOREM 1—Fubini’s Theorem (First Form) If f(x, y) 1s continuous throughout
the rectangular region R: a = x = b,c = y = d, then

d [b b [d
j/f(x,y)dAZ//f(x,y)dxdy://f(x,y)dydx.
R

Example: Calculate the volume under the plane z = 4 - x - y over the rectangular region

R:0<x<2;0<y<1, inthe xy-plane.
Solution (1):

Applying the method of slicing, with slices perpendicular to the x-axis, the volume is

x=2 y=1
/ A(x) dx where A(x) = / (4—x—y)dy
x=0 y=0

which is the area under the curve z =4 - x - y in the plane of c—d—x—y
the cross-section at x. In calculating A(x), x is held fixed and

the integration takes place with respect to y.

x=2 x=2 y=1
Volume = / A(x) dx = / (/ (4 —x— y)dy) dx
x=0 x=0 y=0
=/x=2{4y—xy—y—2rla’x=/x=2(z—x)dx '
x=0 2 y=0 x=0 2 /\/

y=1
A(x) = f 4—x—y)dy

\ ,
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If we just wanted to write a formula for the volume, without carrying out any of the
Integrations, we could write

2l
Volume = / / (4 — x — y) dvdx.
0 Jo

By slicing with planes perpendicular to the y-axis, the typical cross-sectional area is

Solution (2):

x=2 2 x=2
A(y)Z/ (4—x—y)dx={4x—x7—xy} =6 — 2y
x=0 x=0

The volume of the entire solid is therefore i=4—-x—y

.\':l "\':l
Volume = / A(y) dy = / (6 —2y)dy = [6_v — yz](‘) =5
) )

y=0 y=0

Again, we may give a formula for the volume as

12
Volume = f/ (4 —x — y) dxdy.
0 Jo

EXAMPLE 1  Calculate ffR f(x,y) dA for

\ x=2
3 A(y) = j (4—x—y)dx
x=0

(x,y) = 100 — 622 and R 0=x=2 —-1=yp=1,
flx,y v y

Solution  Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

) !
// fx,y)d4 = [ | A (100 — 6x%) dx dy = [ 1 [100x = 26y [}75 dy

R
1 1
= /_](200 —~ 16y) dy = [200y — 8y2]', = 400.

Reversing the order of integration gives the same answer:

2 1 2
/ / (100 — 6x%y) dy dx = / [100y - 3x2y2]iﬁj‘,l dx
0 .J-1 0 :

2
= / [(100 — 3x?) — (=100 — 3x?)] dx
JO
2
= / 200 dx = 400. E
0
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EXAMPLE 2  Find the volume of the region bounded above by the ellipitical paraboloid
z =10 + x*> + 3y?and below by the rectangle R: 0 = x = 1,0 < y < 2.

Solution  The surface and volume are shown in Figure 15.7. The volume is given by the
double integral

1 r2
4 f[(lO X 3y°)dA ££ (10 + x 3y%) dy dx c= 10+ 2% + 32
R ! 7

1
= / [lOy + x%y + ys]izé dx
0

: 2 ' g6
:/ (20 + 2x? + 8)dx = lZOx + =3 + 8x} ==
0 3 0 3 X

Exercises 15.1

Evaluating Iterated Integrals
In Exercises 1-12, evaluate the iterated integral.

2 r4 2 rl 2

1// 2xy dy dx 2// (x — y)dydx 18. //xye"—"dA, R 0=x=2 0=y=1
1.Jo 0.J-1
0,1

R
P rl 1 x2+V2 A p 3
3-/ (x +y+ Ddxdy 4-// (1— > >dxd.v 19. // ——dA R 0=sx=<1, 0=<y=2
~1J-1 0 Jo J) 2+1 ’ i
R

'3 2 "3 10
5. / / 4 = y?)dydx 6. // (¥’ — 2xy) dy dx 20, [[ 2 —da, R 0=x=1, 0=y=1
B 0 . 0 . 0 72 J x2.V2 + 1 ) . 9 o
Lrer oy 4 pd 0 L
7. A A T %9 dxdy 8. / /0 <§ + \/;) dxdy In Exercises 21 and 22, integrate f over the given region.
X 1
55 g i g 21. Square f(x,y) = l/(xy)overthesquarel = x =2,1 =y =2
9. / / X dy dx 10. / / xye® dy dx 22. Rectangle f(x,v) = y cosxy over the rectangle 0 = x = m,
0 1 0 Jl1 0= y= 1
2 fm2 27 [
11. // ysinxdxdy 12. / / (sinx + cos y)dxdy Volume Beneath a Surface
-1J0 T JO 23. Find the volume of the region bounded above by the paraboloid
z=x>+yp* and below by the square R:—1 =x =1,
Evaluating Double Integrals over Rectangles -1=y=1
In Exercises 13-20, evaluate the double integral over the given

24. Find the volume of the region bounded above by the ellipitical
paraboloid z = 16 — x> — y> and below by the square

13.//(6,1;2—2x)d,4, R 0=x=1 0=y=2 RO=x=20=y=2
R

region R.

25. Find the volume of the region bounded above by the plane
z=2—x—y and below by the square R:0 =x =1,

14.//<i2x>d,4, R 0=x=<4 1s<y=2 Pl

4 B4 26. Find the volume of the region bounded above by the plane
. z = y/2 and below by the rectangle R: 0 = x = 4,0 =y = 2,

15. / / Xy cos v dA, R —1l=x=1, 0=sy=nm 27. Find the volume of the region bounded above by the surface
% z = 2sinxcosy and below by the rectangle R: 0 = x = 7/2,

0=y=m/4

16. //vsin @ + y)dd, R —mZ2a=0, DEySa 28. Find the volume of the region bounded above by the surface
JJ) ’ . z=4—y? and below by the rectangle R:0 = x = 1,
R 0=yp= 2.

17. //e"_-"dA, R: 0=x=In2 0=y=In2
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4.2 Double Integrals over Bounded, Nonrectanqular Regions

If f(x, y) is positive and continuous over R, we define the volume of the solid region between
R and the surface z = f(x,y) to be [Jr f(x,y) dA, as before. If R is a region bounded "above" and
"below" by the curves y = g,(X) and y = g1(x) and on the sides by the lines x = a, x = b, we
may again calculate the volume by the method of slicing. We first calculate the cross-sectional
area

y=g2(x)
A(x) = / fx,y)dy
¥

=g1(x)
and then integrate A(x) from x = a to x = b to get the volume as

/ A(x)dx—// f(x,y)dydx
g1(x)

THEOREM 2—Fubini’s Theorem (Stronger Form)  Let f(x, y) be continuous on a
region R.

1. If Risdefinedbya = x = b, g1(x) = y = @(x), with g; and g, continuous
on [a, b], then

22(x)
//f(x v)dA = f/ f(x,y) dy dx.
gilx

2. IfRisdefinedbyc =y = d, h(y) = x = hy(y), with A, and &, continuous
on [c, d], then

d h(y)
//f(x,y) dA = // fx, y) dxdy.
4 c hl()’)

EXAMPLE 1 Find the volume of the prism whose base is the triangle in the xy-plane
bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

z= f(x,y) =3 —x — .

1 fx 1 y2 y=x
=/f(3—x—y)dydx=/ {3y—xy—7} dx
0 Jo J0 v=0
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When the order of integration is reversed (Figure 15.12¢), the integral for the volume is

11 1 5 x=1
V=//(3—x—y)dxdy=/{3x—%—xy} dy
0 Jy 0 x=y

1 2
_ _r Yy 2
—1) (3 >~V 3y—|—2—|—y)dy

The two integrals are equal, as they should be.

Although Fubini's Theorem assures us that a double integral may be calculated as an
iterated integral in either order of integration, the value of one integral may be easier to

find than the value of the other. The next example shows how this can happen.

sin x
e
R

where R 1s the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line
x =1

EXAMPLE 2 Calculate

Solution The region of integration is shown in Figure 15.13. If we integrate first with re-
spect to y and then with respect to x, we find

1 x . 1 . y=x 1
f (/ Slgxdy) dx = f (y Slgl] )dx = / sinx dx
0 0 0 y=0 0

= —cos (1) + 1 ~ 0.46.

If we reverse the order of integration and attempt to calculate

1l
sin x
// ¥ dx dy,

0 Jy

we run into a problem because j ((sinx)/x) dx cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations. n
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Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in
the plane. Regions that are more complicated, and for which this procedure fails, can often
be split up into pieces on which the procedure works.

A. Using Vertical Cross-sections:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 15.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the

y-limits of integration and are usually functions of x (instead of constants) (Figure
15.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here (see Figure 15.14¢) is

x=1 py=VI1-¥
f/f(x,y)d/l =/0/1 f(x,v) dv dx.
x= y=1—x
R

J A y Leaves at
1 () Leaves at 2 . N
1 ////)*— V1-x2 . ////
? Enters at R El‘fer]s at
y=1-x y=1—-x
L Smallegt X L iL;aigeStl x
isx = Sx =
> X .y / )
0 X 1 0 X 1

(a) (b) (c)
FIGURE 15.14 Finding the limits of integration.

B. Using Horizontal Cross-sections:

To evaluate the same double integral as an iterated integral with the order of integration
reversed, use horizontal lines instead of vertical lines in steps 2 and 3.The integral is

vy Largest y Y
ﬂf(xa y)dA = £ [ f(x, ) dx dy isa;gzesly i Enters at
. -y
R

~ x=1-y

y >
N7
Smallest y caves at
]Sy:() “x_\/lyz
~

> X
0 1
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2 [f2x
EXAMPLE 3  Sketch the region of integration for the integral / f (4x + 2) dy dx
0 Jx?

and write an equivalent integral with the order of integration reversed.

: 4 PV
Solution / f (4x + 2) dx dy. The common value of these integrals is 8.
0 Jy/2

y y

4r 2, 4) 4 (2, 4)

y =2

0 2 0 2

EXAMPLE 4  Find the volume of the wedgelike solid that lies beneath the surface z =
16 — x> — y? and above the region R bounded by the curve y = 2\&, the line
vy = 4x — 2, and the x-axis.

Solution f (16 — x> — y?) dA

R
2 p(r2)/4
—j f (16 — x* — y*) dx dy
0 Jy4
2

3 x=(y+2)/4
= / 16x — —=— — xy2 dx
Jo 3 x=y*/4

2 +23 +22 6 4
=f{4(y+2)_(y ) v+ 2 _ar e +%]dy
0

364 4 364
191y 63p2 145y 49p4 )5 LAt
_ 100y 637 145y” AT 0 yT 120803 o,
24 32 96 768 20 ' 1344 ), 1680

(a) The solid “wedgelike” region whose volume is found in Example 4. (b) The region of integration R showing the order dx dy.

(Exercises 15.2)
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4.3 Double Integrals in Polar Form

Suppose that a function f(r, 6) is defined over a region R that is bounded by the rays 8 = a and 6 = f8
and by the continuous curves r = g1(6) and r = g2(#). Suppose also that 0 < gi(0) < g2(6) < a for every
value of & between « and . Then R lies in a fan-shaped region Q defined by the inequalities 0 <r <
aand a <6 <p.

0=

A version of Fubini's Theorem says that 0=B [r=g)0)
ﬂf(r, 0) d4A = / f(r,6) rdrdb
9:
R

a Jr=gi(0)
Finding Limits of Integration:

To evaluate f f » f(7, 0) d4 over a region R in polar coordinates, integrating first with
respect to » and then with respect to 6, take the following steps.

Sketch. Sketch the region and label the bounding curves (Figure 15.23a).

2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in
the direction of increasing r. Mark the r-values where L enters and leaves R. These are
the r-limits of integration. They usually depend on the angle 6 that L makes with the
positive x-axis (Figure 15.23b).

3. Find the 0-limits of integration. Find the smallest and largest -values that bound R.
These are the 6-limits of integration (Figure 15.23c). The polar iterated integral is

o "0=7/2 [r=2
,0)dA = ,0)rdrdo.
/R/ f(r ) .[)—17/4 .[—\/Ecscﬂf(r )r ’

y y Y

Leavesatr = 2 /Largest 0 is g
L
24y =4 L 2 y
2 2 Sy =X
R > R | R e
V2 7 (\@\6) rsing =y= V2| V2 7
y=V2 or L
v
r=%V2csch Enters at r = V2 csc 0 e
// Smallest 0 is %
X X X
0 0 0

(a) (b) (c)
FIGURE 15.23 Finding the limits of integration in polar coordinates.
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EXAMPLE 1  Find the limits of integration for integrating f(r, ) over the region R that lies inside the
cardioid » = 1 + cos 0 and outside the circle »r = 1.
Solution

1. We first sketch the region and label the bounding curves (Figure 15.24). Y
9 =
N

)3

r=1+cosf

2. Next we find the r-limits of integration. A typical ray from the origin
enters R where r = 1 and leaves where r = 1 + cos 6.

3. Finally we find the 8-limits of integration. The rays from the origin
that intersect R run from 6 = —7/2to # = /2. The integral is ) G > X

w/2 f1+cosf
/ [ f(r, 0) rdrde.
—-m/2J1 \ I

Leaves at
. . . . =1+ cosf
If f(r, ) is the constant function whose value is 1, then the integral f:t: 1 : o8

of f over R is the area of R.

(==}

Il

|

9
SN

m

=

@

z

Area in Polar Coordinates

The area of a closed and bounded region R in the polar coordinate plane is

A= [/rdrd@

R
EXAMPLE 2 Find the area enclosed by the lemniscate 7* = 4 cos 26.

Solution
y Leaves at

/4 £ \4cos20 /AT r=\4 cos 20 A - 7= Vdcos20
A—4/ / rdrd6—4/ lz} do 4
0 0 0 r=0
/4 /4
=4/ 2cos29d9=4sin29] = 4,
0 ’ Enters at \\_,T r? = 4 cos 20
r=0 7

Changing Cartesian Integrals into Polar Integrals

/ff(x,y)dxdy Zﬂf(rcosﬁ,rsine)rdrde
G

R

EXAMPLE 3 Evaluate // e dy d,
R

where R is the semicircular region bounded by the x-axis and the curve y = V1 — x
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Solution ¥

1 1 y = 1 —x
ﬂ Xyt dydx—ff e’ rdrdﬂ—/ {Ee’j] de r=1
0

=£ 2(e—l)cﬂ_’;’—z(e—l). b -

—_—

=D
D>
I
o

V1-2
EXAMPLE 4  Evaluate the integral /1/ 1 @2 + y?) dy dv.
o Jo

Solution  Integration with respect to y gives

_ W2\3)2
/1 (xz\/l - x2 + —(1 iE. )dx,
0

3

an integral difficult to evaluate without tables.
0=y=VI—x?and 0 =x =1,

Substituting the polar coordinates x = rcosf,y = rsinf,0 = 6 < 7w/2and0 < r = 1,
and replacing dx dy by r dr dO in the double integral, we get

1 V1=
// (x2+y2)dydx=f /(rz)rdrdﬁ
0 JoO

7’4T 1 /77/2 1 -
= “loa= | Gae =T
IANCIACEY i O
EXAMPLE 5

EXAMPLE 6  Using polar integration, find the area of the region R in the xy-plane en-
closed by the circle x> + y2 + 4, above the line y = 1, and below the line y = V/3x.

w/3 2 Y o
Solution /fdA_f / - dr db y=\V3x
csc 0 2
/3 1 =2 y=1,or ‘(1’\/5)
:/ {’,2} 4o r=csch }
/6 2 r=csc " R
|
/3 1 \
1 5 \
= =4 — csc? 0] do /

[r/é 2[ csc” ) (V3 )
/3 !
=%[4B+cot8]m/,6 %SI})‘Z*)’Z:“ ‘
1 (4 1 1(4 =3 0 ! 2

T T T =
(e s) 3§ ) -7

Exercises 15.4
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Exercises 15.4

Area in Polar Coordinates

28. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid » = 1 + cos 0 and outside the circle » = 1.

31. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid » = 1 + sin 6.

32. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids» = 1 + cos@andr = 1 — cos 6.

4.4 Triple Integrals in Rectangular Coordinates

y=glx =fa(x, )
V= dz dy dx—/ / / dz dy dx
y=gi(x) filx, y)

EXAMPLE 1  Find the volume of the region D enclosed by the surfaces z = x? + 3y?
andz = 8 — x? — y°.

Solution The volume 1s

V:ﬁg&@ﬂ

8—x“—y
—// dz dy dx
\V(4—x?) x2+3y?

= 8 — 2x% — N dyd
[ -

4 =V (4—x?)/2
=[2 [(8—2x2)y—§y} dx

N r—
3/2
= / 2(8 — 2x2) ) )dx

T Ao

= Q7 \6 . After integration with the substitution x = 2 sinu
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